If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7a^2-16=0
a = 7; b = 0; c = -16;
Δ = b2-4ac
Δ = 02-4·7·(-16)
Δ = 448
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{448}=\sqrt{64*7}=\sqrt{64}*\sqrt{7}=8\sqrt{7}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{7}}{2*7}=\frac{0-8\sqrt{7}}{14} =-\frac{8\sqrt{7}}{14} =-\frac{4\sqrt{7}}{7} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{7}}{2*7}=\frac{0+8\sqrt{7}}{14} =\frac{8\sqrt{7}}{14} =\frac{4\sqrt{7}}{7} $
| R(4)=8/x-3 | | (x+2)+(7x-9)=180 | | 6x^2-5x-1000=0 | | 4x-7=-4(2x-1/2) | | x+(-6)=34= | | 6x^2-89x+315=0 | | √8x+1=×+2 | | 24=16+a | | 2(x+1=x+12 | | 6x^2+91x+85=0 | | -10y=-10 | | 8x^2-7x-17=0 | | 9=3x+4x-5 | | 5b^2-6b-104=0 | | 6^(3x-4)-6=30 | | 6x+7+2x=47 | | (x+2)+(7x-9)+(3x)=180 | | 4.1+10m=6.34 | | -4x+2+6x=6 | | 2.3+10m=7.15 | | 5x+1+6x=133 | | 3.8+10m=7.15 | | (q+7)(q–4)=0 | | -6h+20=-h | | -9+1x=0 | | 2n-1=53 | | (2x-5)=3x+10 | | -7-2x=-4x+8 | | 2x–1=3x–6 | | 4x^2+9=144 | | -7-2x=-4x+ | | 4.9+10m=7.52 |